Citizen-Powered Air & Water Quality Improvement

Final Deliverable

ASRB Consulting

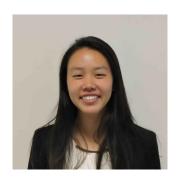
May 2018

Introductions

Osman Mansur, PM

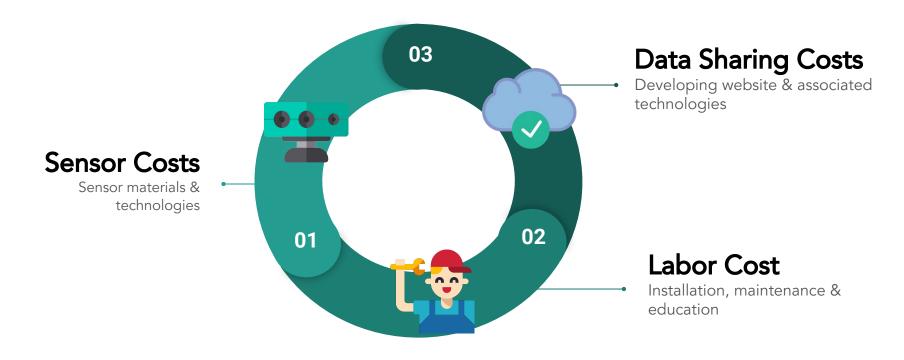
Siyuan Liu, PM

Shivani Parikh


Ansel Deng

Winson Truong

Sydney Pon



Heather Zhang

Part 2: Pricing Model

Total Cost

Market Sensor Inputs

LOW END

EX: AirVisual Pro

MIDDLE END

\$1,733

EX: Dylos DC 1700

HIGH END

\$5,500

EX: BeACON Sensor Node

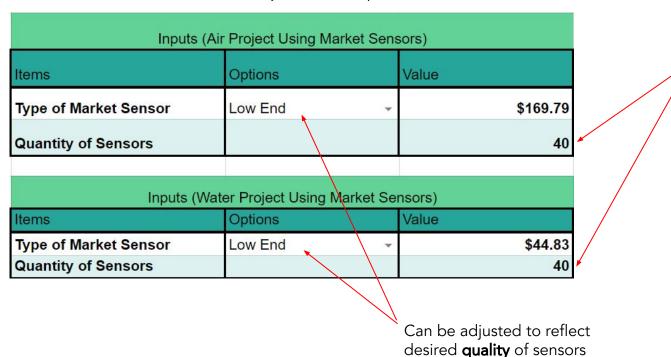
LOW END

\$45

MIDDLE END

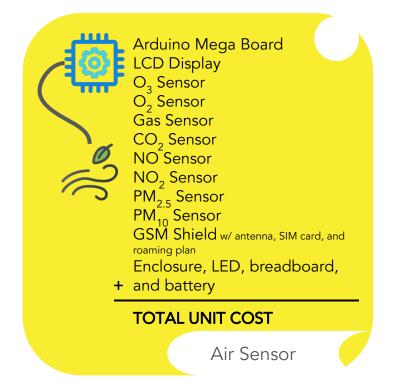
\$930

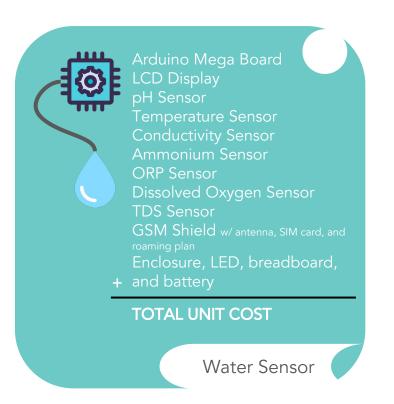
HIGH END


\$5,304

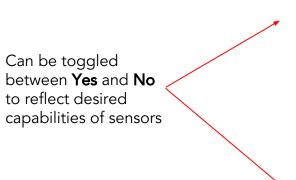
Market Sensor Inputs (Spreadsheet)

Seen on "Sensor Inputs" tab in spreadsheet



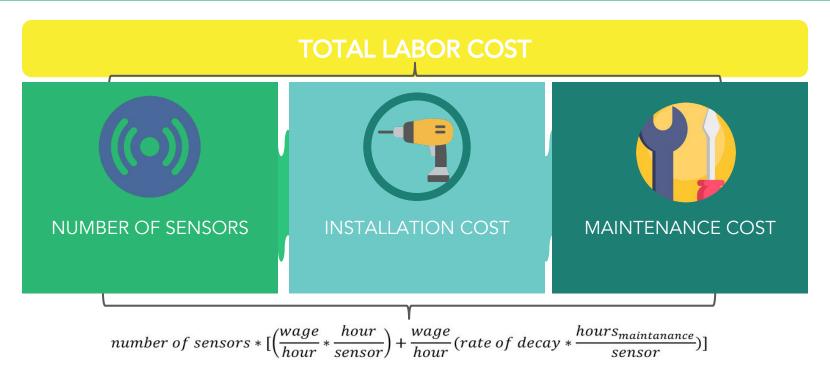

Can be adjusted to reflect desired **quantity** of sensors

DIY Sensor Inputs



DIY Sensor Inputs (Spreadsheet)

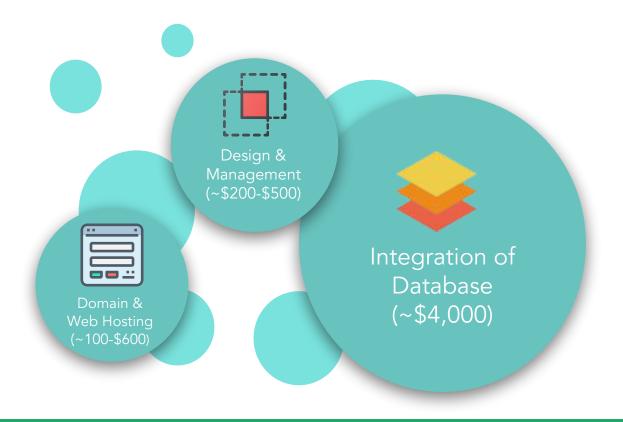
Seen on "Sensor Inputs" tab in spreadsheet


Items	Options	Val	ne
Functions			
PM2.5	Yes	~	\$30.00
PM10	Yes	~	\$20.00
Gas	Yes	*	\$10.00
CO2	Yes	*	\$56.00
NO	No	~	\$0
NO2	No	*	\$0
O2	No	~	\$0
O3	No	*	\$0
Extra Material Costs			\$240.00
Unit Cost			\$356.00
Quantity of Sensors			40

Inputs (Water Project Using DIY Sensors)				
Items	Options	Value		
Functions				
рН	Yes	*	\$50.00	
Temperature	Yes	-	\$10.00	
Conductivity	Yes	*	\$20.00	
Ammonium	Yes	*	\$15.00	
ORP	No	~	\$0	
Dissolved Oxygen	No	-	\$0	
TDS	No	*	\$0	
Extra Material Costs			\$240.00	
Unit Cost			\$335.00	
Quantity of Sensors			40	

Can be adjusted to reflect desired quantity of sensors

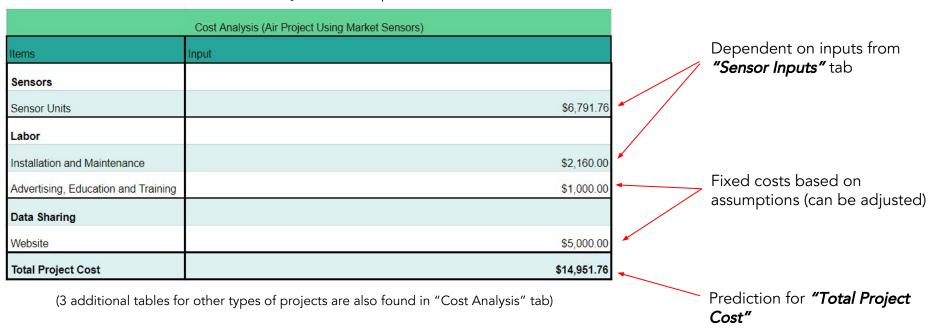
Labor Inputs



(Additional labor costs may be incurred from advertising, education and training)

Case Study Pricing Model Pricing Example

Data Sharing Inputs



Final Price Prediction

Seen on "Cost Analysis" tab in spreadsheet

Part 3: Pricing Example

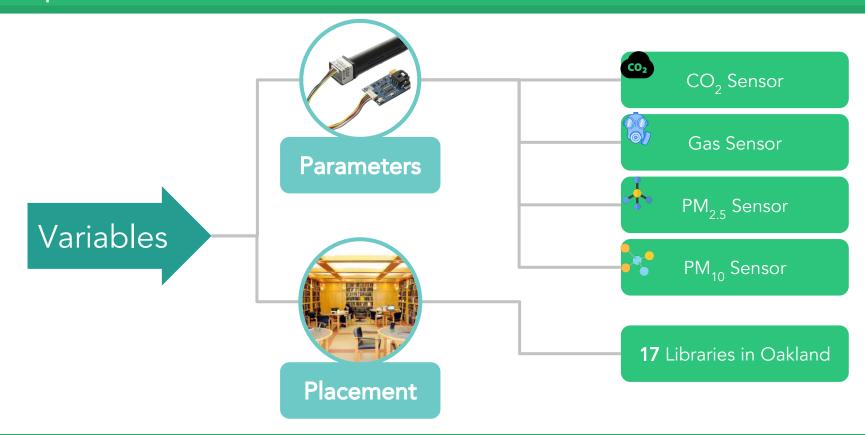
Project Scenario

PROBLEM

APPROACH

IMPLEMENTATION

Community is affected by CO₂ and particulate matter from diesel emissions from Port of Oakland


Using CO₂ and PM sensors to update real-time air quality data on community website

Installing sensors around public libraries to monitor sensitive parameters

Inputs

Case Study

Pricing Model

Pricing Example

Inputs (Spreadsheet)

Parameters for DIY Sensor: PM2.5, PM10, Gas, CO2

Number of sensors: 17 (# of branches of Oakland Public Library)

Inputs (Air Project Using DIY Sensors)				
Items	Options		Value	
Functions				
PM2.5	Yes	•	\$30.00	
PM10	Yes	~	\$20.00	
Gas	Yes	-	\$10.00	
CO2	Yes		\$56.00	
NO	No	•	\$0	
NO2	No	~	\$0	
O2	No	•	\$0	
O3	No	•	\$0	
Extra Material Costs			\$240.00	
Unit Cost			\$356.00	
Number of Sensors			17	

Price Prediction

Total Project Cost: \$12,970

May be underestimate due to potential overhead costs

Cost Analysis (Air Project Using DIY Sensors)		
Items	Input	
Sensors		
Sensor Units	\$6,052.00	
Labor		
Installation and Maintenance	\$918.00	
Advertsing, Education and Training	\$1,000.00	
Data Sharing		
Website	\$5,000.00	
Total Project Cost	\$12,970.00	

Appendix: Imperial County Project

In 2014, The California Environmental Health Tracking Program partnered with community organization Comite Civico del Valle (CCV) to track air quality in Imperial County, an area where pollution has been a pressing issue. Community members helped inform the placement of 40 air quality monitors in locations throughout the area. While the CCV oversees the installation and maintenance of the sensors, they meet regularly with a committee of 15 local residents to gain community insight and analysis.

A data-sharing network between the monitors has been developed by PhD candidates at the University of Washington, and the data is publicly available at www.ivanair.org.

paul.english@cdph.ca.gov

Paul B. English, PhD, MPH Senior Branch Science Advisor CA Dept of Public Health

Appendix: Air Quality Sensors

Grove O2 Gas Sensor	Grove O3 Gas Sensor	Gravity CO2 Gas Sensor	Aquapina NO Gas Sensor	Adafruit PM2.5 Air Quality Sensor	Honeywe II HPMA 150S0 Series
O2	O3	CO2	NO	PM 2.5	PM 10
\$62	\$43	\$56	\$36	\$30	\$20

Case Study

Pricing Model

Pricing Example

Appendix: Water Quality Sensors

Gravity: Analog pH Sensor	Gravity: Analog TDS Sensor	Gravity: Analog Conductiv ity Sensor	SainSmart Ammonia Sensor	Redox Probe ORP Sensor	Atlas Scientific DO Circuit
рН	TDS	Conduct ivity	NH4	ORP	DO
\$50	\$15	\$20	\$15	\$40	\$40

Case Study

Pricing Model

Pricing Example

Appendix: Median Wage

\$15.74	Installation Technician
\$25.43	Fire Alarm Technician
\$15.31	Helpers-Installation
\$18.11	Maintenance and Repair Workers, General
\$21.40	Maintenance and Repair Workers, Major Group

Association for Socially Responsible Business

"ASRB is a student group at University of California, Berkeley with a mission to systematically advance corporate social responsibility and inspire the next generation of socially responsible professionals through mentorship, education, and professional development."

https://asrb.berkeley.edu

asrbatberkeley@gmail.com